The SPECIALIST NLP Tools

Dr. Chris J. Lu

The Lexical Systems Group

NLM. LHNCBC. CGSB

Nov., 2011
• The SPECIALIST NLP Tools: http://specialist.nlm.nih.gov
The SPECIALIST LEXICON

LexBuild

Lexical Tools

LexCheck

Text Tools

LexAccess

NLP Projects

The SPECIALIST LEXICON

LexBuild

Lexical Tools

LVG-Derivations

Text Tools

NLP Projects

Table of Contents

• Introduction
• Lexical Variant Generation (LVG)
 ▪ Derivational Variant Generation
• Lexical Tools
 ▪ Norm
 ▪ Applications
• NLP Tools
• Questions
Lexicon To Lexical Tools

• How to use Lexicon (lexical records)?
• Lexical record(s) / Lexicon:
 ▪ Text
 ▪ Tables
• LexCheck package
 ▪ XML
 ▪ APIs: Java object(s)
Example: Spelling Variant

- Example: color & colour
- Lexical record in text & Java API:

```java
{base=color
 spelling_variant=colour
 entry=E0017902
   cat=noun
   variants=uncount
   variants=reg
 }
```

Step 1: Convert to Java Object
- LexRecord ToJavaObjFromText(String text)
- Vector<LexRecord> ToJavaObjsFromText(String text)
- Vector<LexRecord> ToJavaObjsFromTextFile(String inFile)
 ...

Step 2: Retrieve information from LexRecord Java Object
- Vector<String> GetSpellingVars()
- String GetBase()
- String GetCategory()
 ...

- LRSPL table:

<table>
<thead>
<tr>
<th>EUI</th>
<th>Spelling Variant</th>
<th>Base form</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>E0017902</td>
<td>colour</td>
<td>color</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example: Inflectional Variant

- **Lexical record in text & Java API:**

```
{base=color
 spelling_variant=colour
 entry=E0017902

 cat=noun
 variants=uncount
 variants=reg
}
```

Step 1: Convert to Java Object
- `Vector<LexRecord> ToJavaObjsFromText(String text)`
- `Vector<LexRecord> ToJavaObjsFromTextFile(String inFile)`

Step 2: Retrieve information from LexRecord Java Object
- `InflVarsAndAgreements GetInflVarsAndAgreements()`
 - `Vector<InflVar> GetInflValues()`
 - `String GetInflection()`
- `String GetBase()`
- `String GetCategory()`

- **LRAGR table:**

<table>
<thead>
<tr>
<th>EUI</th>
<th>Infl Var</th>
<th>Category</th>
<th>Agreement</th>
<th>Citation Form</th>
<th>Base Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>E0017902</td>
<td>color</td>
<td>noun</td>
<td>count(sing)</td>
<td>color</td>
<td>color</td>
</tr>
<tr>
<td>E0017902</td>
<td>color</td>
<td>noun</td>
<td>uncount(sing)</td>
<td>color</td>
<td>color</td>
</tr>
<tr>
<td>E0017902</td>
<td>colors</td>
<td>noun</td>
<td>count(plur)</td>
<td>color</td>
<td>color</td>
</tr>
<tr>
<td>E0017902</td>
<td>colour</td>
<td>noun</td>
<td>count(sing)</td>
<td>color</td>
<td>colour</td>
</tr>
<tr>
<td>E0017902</td>
<td>colour</td>
<td>noun</td>
<td>uncount(sing)</td>
<td>color</td>
<td>colour</td>
</tr>
<tr>
<td>E0017902</td>
<td>colours</td>
<td>noun</td>
<td>count(plur)</td>
<td>color</td>
<td>colour</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Lexical Variations (Lexicon)

- Spelling variants (-f:s):
 - color|colour (noun|E0017902, verb|E0017903)
 - grey|gray (adj|E0030394, noun|E0030395, verb|E0030396)
 - heart burn|heart-burn|heartburn (noun|E0030961)
 - hemostasis|haemostasis (noun|E0030684)

- Inflectional/uninflectional variants (-f:l, -f:b, -f:B):
 - heart burn (noun|E0030961)
 - color|colors (noun|E0017902)
 - color|colored|colored|colors|coloring (verb|E0017903)
 - see|sees|saw|seen|seeing (verb|E0055007)
 - saw|saws|sawed|sawn|sawing (verb|E0054444)

 - ER|emergency room
 - ER|enhancement ratio
 - ER|eye research
 - 20+ known acronyms …

- Nominalization (-f:nom):
 - active|adj|activity|noun
 - active|adj|activeness|noun

- ProperNoun (-f:fp):
 - Clinton
 - Virginia
 - University of Virginia
Basic Variations

- Lowercase (-f:l):
 - AIDS|aids
 - ÆÅÅÅÅ ÅÉÈÈ ÈÍÍÍ ÒÓÓÓÓ Ø ÚÚÚÚ ÙÁÁÁÁÁ èééé íííí óóóó ø úúúú

- Strip punctuation (-f:o, -f:p, -f:P)
 - St. John's|St Johns

- Strip stopwords (-f:t)
 - Remove "of", "and", "with", "for", "nos", "to", "in", "by", "on", "the", "(non mesh)", etc.
 - Academy of Physical Medicine|Academy Physical Medicine

- Remove genitive (-f:g):
 - Down's Syndrome|Down Syndrome

- Remove parenthetical plural form of (s), (es), (ies) (-f:rs)
 - Burn(s);skin|Burn;skin
 - 9(s)-erythromycylamine|9(s)-erythromycylamine

- Strip ambiguity tags (-f:T)
 - cold <1>|cold

- Sort words (-f:w)
 - Cancer, Lung|Cancer Lung
 - Lung Cancer|Cancer Lung

- Word size filter (-f:ws)
 - Academy of Physical Medicine|Academy Physical Medicine

- …
Others Variations

- Derivational variants (-f:d, -f:R):
 - gene|noun|genetic|adj
 - gene|noun|genic|adj
 - hyperuricemic|adj|hyperuricemia|noun
 - hyperplastic|adj|hyperplasia|noun

- Synonyms (-f:y):
 - otitis|ear inflammation (C0029877)
 - kidney|renal| (C0022646)
 - eartburn|pyrosis|brash (C0018834)

- Canonical Form (-f:C): used in LuiNorm for Lui assignment
 - color|color
 - colour|color
 - colored|color
 - coloued|color

- ...
Complicated Variations

- ASCII Conversion (-f:q, -f:q0, -f:q1, ... -f:q8):
 - resumé|resume
 - spælsau|spaelsau
 - ⅝|5/8
 - “Quote” |"Quote"
 - α-Best™|alpha-Best
 - ...

- Norm (-f:N):
 - Hodgkin's diseases, NOS|disease hodgkin
 - proofread|proof read
 - proof-read|proof read
 - proof read|proof read
 - left|left
 - left|leave

- LuiNorm (-f:N3):
 - left|leaf

- AntiNorm (Use for Approximate match in Lexicon):
 - Abrami disease|Abrami's disease
 - Abrami disease|Abrami's diseases

- ...
Lexical Variant Generation (LVG)
Lexical Tools - LVG

- A suite of text utilities
Lexical Tools - LVG

- A suite of text utilities take the given input
Lexical Tools - LVG

- A suite of text utilities that generate, mutate, and filter out lexical variants from the given input
LVG - 2012

- 62 flow components
- 37 options
 - input filter options (3)
 - global behavior options (12)
 - flow specific options (2)
 - output filter options (20)
Flow Components

leave → inflect → leaves, leaving, left
shell> lvg -f:i
leave
leave|leave|**128**|1|i|1|
leave|leave|128|512|i|1|
leave|leaves|128|8|i|1|
leave|left|1024|64|i|1|
leave|left|1024|32|i|1|
leave|leave|1024|1|i|1|
leave|leave|1024|262144|i|1|
leave|leave|1024|1024|i|1|
leave|leaves|1024|128|i|1|
leave|leaving|1024|16|i|1|
> lvg –f:i
leave

Fielded Output
A Serial Flow

- Flow components can be arranged so that the output of one is the input to another.
A Serial Flow - Example

```
shell> lvg -f:l:q:g:t:p:w
The Gougerot-Sjögren's Syndrome
The Gougerot-Sjögren's Syndrome|
gougerotsjogren syndrome|
2047|16777215|l+q+g+t+p+w|1|
```
• Multiple flows can be defined
Parallel Flows - Example

```
> lvg -f:n -f:B:y

| ear | ear | 2047 | 1048575 | n | 1 |

| ear | aural | 1 | 1 | B+y | 2 |
| ear | auricularis | 1 | 1 | B+y | 2 |
| ear | otic | 1 | 1 | B+y | 2 |
| ear | otor | 1 | 1 | B+y | 2 |
```
Input Filter Options

Take field 7 from the input

> lvg -f:u -t:7 -F:8:6

C0035440|ENG|S|L0035434|VW|S0003894|Rheumatic carditis, acute

acute Rheumatic carditis|S0003894
Global Behavior Options

Input term

Output terms

Output terms

> lvg -f:L -f:E

otitis

otitis\otitis\128\513\L\1

otitis\E0044452\128\513\E\2

-s:”\”

Change separator to “\”
> lvg -f:L -SC -SI

hot

hot|hot|<adj+verb>|<base+positive+infinitive+pres1p23p>|L|1|

Show the category and inflection names
Derivational Variants

- **Words** related by a derivational process
 - Derivational process: suffix and prefix
 - Used to create new words based on existing words
 - Meaning change
 - Category change

- Focus on relatedness (no direction)
Derivations Application

- hyperuricemic|adj, E0317343, no CUI
- hyperuricemia|noun, E0032862, is a UMLS Metathesaurus term (C0740394)
Derivational Network

kind|noun
kind|adj
kindly|adv
kindliness|noun

unkind|adj
unkindly|adv
unkindliness|noun
unkindness|noun
Derivational Pair

kind|noun

kind|adj

kindly|adv

kindliness|noun

unkind|adj

unkindly|adv

unkindliness|noun

unkindness|noun

kindness|noun
Derivational Pair

- Each link and the associated two nodes in derivational network define a derivational pair
- Includes base forms and syntactic category information
- Bi-directional
- Only involves one or none derivational affix
- Lvg format: base 1|category 1|base 2|category 2
- Examples:
 - kind|adj|kindness|noun
 - kind|adj|kindly|adv
 - kind|adj|unkind|adj
 - kind|adj|kind|noun
Suffix Derivation (SD) Pair

- kind | noun
- unkind | noun
- kindly | adv
- unkindly | adv
- kindliness | noun
- unkindliness | noun
Prefix Derivation (PD) Pair

- kind | noun
- unkind | noun
- kindly | adv
- unkindly | adv
- kindliness | noun
- unkindliness | noun
Zero Derivation (ZD) Pair

kind | noun

kind | adj

kindly | adv

kindliness | noun

unkind | adj

unkindly | adv

unkindliness | noun

unkindness | noun
Derivational Analysis (Tagging)

- Performed by linguistic experts
- Is complicated when more than one affix involved
 - look at usage of all related words
 - peel off the derivational affixes
 - check if they are valid words
 - determine the order of derivation
 - multi-option-al, pseudo-hyper-para-thyroid-ism

```
kind|noun

kind|adj

kindly|adv

kindliness|noun

unkind|adj

unkindly|adv

unkindliness|noun
```
Derivational Pair & Tag

- Format: base 1|category 1|base 2|category 2|Tag
- Examples:
 - kindness|noun|kind|adj|yes
 - unkindly|adv|unkindliness|noun|yes
 - kindness|noun|kindly|adj|no
 - kindness|noun|unkindness|noun|no
Derivational Pair & Tag

- Format: base 1|category 1|base 2|category 2|Tag
- Examples:
 - kindness|noun|kind|adj|yes
 - unkindly|adv|unkindliness|noun|yes
 - kindness|noun|kindly|adj|no
 - kindness|noun|unkindness|noun|no
Derivational Pair & Tag

- Format: base 1|category 1|base 2|category 2|Tag
- Examples:
 - kindness|noun|kind|adj|yes
 - unkindly|adv|unkindliness|noun|yes
 - kindness|noun|kindly|adj|no
 - kindness|noun|unkindness|noun|no
Derivational Pair & Tag

- Format: base 1|category 1|base 2|category 2|Tag
- Examples:
 - kindness|noun|kind|adj|yes
 - unkindly|adv|unkindliness|noun|yes
 - kindness|noun|kindly|adj|no
 - kindness|noun|unkindness|noun|no
Derivational Flows in LVG

• Direct derivation generation (-f:d)
 - All valid derivational pairs associated with the node
 - Example:
 4 derivational variants of kind|adj are found:
 kind|noun, kindness|noun, kindly|adv, and unkind|adj

• Recursive derivation generation (-f:R)
 - Entire derivational network
 - Also provides the distance (number of derivational pairs involved). For example, 2 for kindness|noun and kindly|adv
Derivational Flow

• Facts
 • 4,559 derivational pairs (2011)

<table>
<thead>
<tr>
<th>Base 1</th>
<th>Category 1</th>
<th>Base 2</th>
<th>Category 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>treatment</td>
<td>noun</td>
<td>treat</td>
<td>noun</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

• Rules
 • 97 SD-Rules
 • Use exceptions to increase precision

EXAMPLE: retirement | noun | retire | verb
RULE: ment$ | noun | $ | verb
EXCEPTION: apartment | apart;
EXCEPTION: basement | base;
EXCEPTION: department | depart;
...
• retirement |noun=> retire|verb

EXAMPLE: retire|verb|retirement|noun
RULE: $|verb|ment$|noun
EXCEPTION: apart|apartment;
...

EXAMPLE: conformant|adj|conformance|noun
RULE: ant$|adj|$|verb
EXCEPTION: important|import;
...

EXAMPLE: fluent|adj|fluency|noun
RULE: ent$|adj|ency$|noun
EXCEPTION: emergency|emergent;
...

EXAMPLE: retirement|noun|retire|verb
RULE: ment$|noun|$|verb
EXCEPTION: apartment|apart;
...
SD-Rules Filters

• Exception filter
 ▪ Exclude exceptions for the rules
 ▪ Implemented in the Trie
 ▪ depart|verb|department|noun

• Word length filter
 ▪ Exclude short word
 ▪ Default (min.) value is 3
 ▪ moment|noun|mo|verb

• Stem length filter
 ▪ stem length = word length – suffix length
 ▪ Default (min.) value is 3
 ▪ lament|noun|la|verb

• Domain filter
 ▪ Exclude words not in Lexicon
 ▪ color|verb|colorment|noun
Derivations - Evaluation

• Facts
 - 4,559 derivational pairs (2011)
 - Maintenance: collecting, validating, and tagging
 - Has not grown proportionally with Lexicon …
 - Prefix derivation & zero derivation (conversion) ?

• Rules
 - 97 SD-Rules
 - High frequency?
 - High precision?
 - Prefix derivation & zero derivation rules?
Challenges

• Facts
 - More coverage: include zeroD, prefixD, suffixD
 - Grows proportionally with Lexicon
 - Higher precision

• Rules
 - Evaluate frequency and precision for SD-Rules
 - Include PD-Rules?
 - Include ZD-Rules?
Zero Derivation (ZD)

- Also called conversion or functional shift
- assigns an existing word to a new syntactic category without any concomitant change in form
- ZD Pairs:
 - kind|noun|kind|adj|yes
 - flex|noun|flex|verb|yes
 - round|adj|round|prep|no
ZD Process

- Retrieve base forms (citation & spelling variants) and category information from Lexicon
- Raw ZD pairs: all words with multiple categories
- Filter programs:
 - Min. Word length (< 2):
 Example: a|noun|a|det|no
 - a|noun: abbreviations for 50+ nouns, such as abortion, acid, adult, …
 - Exclude abbreviations and acronyms
 Example: AAIR|noun|AAIR|adj |no
 - AAIR|noun: age-adjusted incidence rate
 - AAIR|adj: rate-adaptive atrial
- Final tagging
ZD Results

- Raw ZD pairs: 18,400
- Filtered: 10.52%
- Tagged: 89.48% (recorded for future release)
- No ZD-Rules
 - Valid rate: 80.14%
 - Invalid: 1,718

<table>
<thead>
<tr>
<th></th>
<th>ZD Counts</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>18,400</td>
<td>100.00%</td>
</tr>
<tr>
<td>Filtered</td>
<td>1,935</td>
<td>10.52%</td>
</tr>
<tr>
<td>Tag - Invalid</td>
<td>1,718</td>
<td>9.34%</td>
</tr>
<tr>
<td>Tag - Valid</td>
<td>14,747</td>
<td>80.14%</td>
</tr>
</tbody>
</table>
Prefix Derivation (PD)

- Placed at the beginning of a base word to form another word
- Three patterns:
 - **prefix**: significant | adj **non**significant | adj
 - **prefix and a dash**: significant | adj | non-significant | adj
 - **prefix and a space**: significant | adj | non significant | adj
- PD pairs:
 - unkind | adj | kind | adj | yes
 - kindness | noun | unkindness | noun | no
 - unplug | verb | plug | noun | no
 - touchable | adj | untouchable | adj | yes
 - touchable | adj | untouchable | noun | yes
PD Process

• Collects common derivational prefixes (143)
• Retrieve all base forms from Lexicon
• Raw PD pairs: match three prefix patterns
 ▪ prefix: nonsignificant|adj|significant|adj
 ▪ prefix and a dash: non-significant|adj|significant|adj
 ▪ prefix and a space: non significant|adj|significant|adj
• Final tagging
 ▪ Tag the most frequent and user requested prefixes
PD Results

- **Raw PD pairs:** 115,139
- **Tagged:** 74.98% recorded for future release
- **No PD-Rules**
 - Avg. 65.67% valid rate
 - Max. 80.31% valid rate
- **No Category filter:**
 - 24.54% of valid PD pairs change category
 - fog|noun|antifog|adj|yes
- **No acronym or abbreviation filter:**
 - 0.83% of valid PD pairs are acronyms or abbreviations
 - MDR|noun|antiMDR|adj|yes
 - MDR, acronym for “multidrug resistance”

<table>
<thead>
<tr>
<th>prefix</th>
<th>Raw PrefixD</th>
<th>Valid prefixD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 non</td>
<td>16,471 (14.31%)</td>
<td>12,598 (76.49%)</td>
</tr>
<tr>
<td>2 pre</td>
<td>9,651 (8.38%)</td>
<td>7,224 (74.85%)</td>
</tr>
<tr>
<td>3 post</td>
<td>9,490 (8.24%)</td>
<td>7,621 (80.31%)</td>
</tr>
<tr>
<td>4 anti</td>
<td>6,500 (5.65%)</td>
<td>5,051 (77.71%)</td>
</tr>
<tr>
<td>5 sub</td>
<td>4,262 (3.70%)</td>
<td>2,698 (63.30%)</td>
</tr>
<tr>
<td>6 re</td>
<td>4,198 (3.65%)</td>
<td>1,527 (36.37%)</td>
</tr>
<tr>
<td>7 inter</td>
<td>4,143 (3.60%)</td>
<td>2,708 (65.36%)</td>
</tr>
<tr>
<td>8 multi</td>
<td>3,781 (3.28%)</td>
<td>2,169 (57.37%)</td>
</tr>
<tr>
<td>9 intra</td>
<td>3,575 (3.10%)</td>
<td>2,360 (66.01%)</td>
</tr>
<tr>
<td>10 pseudo</td>
<td>3,331 (2.89%)</td>
<td>2,082 (62.50%)</td>
</tr>
<tr>
<td>11 un</td>
<td>2,211 (1.92%)</td>
<td>1,271 (57.49%)</td>
</tr>
<tr>
<td>12 peri</td>
<td>1,901 (1.65%)</td>
<td>1,367 (71.91%)</td>
</tr>
</tbody>
</table>

| Tag | 86,333 (74.98%) | 56,694 (65.67%) |
| Raw | 115,139 (100%) |
Suffix Derivation (SD)

- Also called a postfix or ending
- Placed after the stem of a word to form another word
- Several hundreds of derivational suffixes
- Collects common derivational suffixes (200)
- SD Pairs:
 - kind|adj|kindness|noun
 - kind|adj|kindly|adv
SD Process - Nominalization

- The process of producing a noun from a verb or an adjective via the derivational suffix
- Coded in Lexicon
- A type of suffix derivation
- Bi-directional

```
{base=locate
equality=E0037939
  cat=verb
  variants=reg
  tran=np
  link=advbl
  compl=nn,advbl
  nominalization=location|noun|E0037940
}

{base=location
equality=E0037940
  cat=noun
  variants=reg
  variants=uncount
  compl=pphr(of,np)
  compl=pphr(by,np)
  nominalization_of=locate|verb|E0037939
}
```
SD Process - ND

- Raw ND pairs: retrieve all nominalization information from Lexicon
- Filters:
 - Pattern filter: exclude invalid SD for verb particle ND
 - **Pattern-1**: baseParticle|noun|base|verb => backup|noun|back|verb
 - **Pattern-2**: base-Particle|noun|base|verb => cut-through|noun|cut|verb
 - **Pattern-3**: inflParticle|noun|base|verb => grownup|nou|grow|verb
 - **Pattern-4**: infl-Particle|noun|base|verb => salting-in|noun|salt|verb
 - **Particle Exception**: “per” => shopper|noun|shop|verb
 - Exception filter: exclude other known SD pairs
 - Examples:
 - face-saving|noun|save|verb
 - decision-making|noun|make|verb
 - merry-making|noun|make|verb
 - lovemaking|noun|make|verb
 - ...
ND (SD) Results

• Raw ND pairs: 14,445
• Filtered: 0.50%
• Valid: 99.50 % ND pairs (program generated)

<table>
<thead>
<tr>
<th>ND Pairs</th>
<th>Filtered</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,445</td>
<td>72</td>
<td>14,373</td>
</tr>
<tr>
<td>100%</td>
<td>0.50%</td>
<td>99.50%</td>
</tr>
</tbody>
</table>
Identified SD-Rules from Valid ND pairs
- 496 possible rules are found
 - location|noun|locate|verb => ion$|noun|e$|verb

Further analysis

Derivation Suffix Rules

<table>
<thead>
<tr>
<th>Derivation Suffix Rules</th>
<th>Example</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ation$</td>
<td>noun</td>
<td>ate$</td>
</tr>
<tr>
<td>sion$</td>
<td>noun</td>
<td>se$</td>
</tr>
<tr>
<td>ution$</td>
<td>noun</td>
<td>ute$</td>
</tr>
<tr>
<td>etion$</td>
<td>noun</td>
<td>ete$</td>
</tr>
<tr>
<td>otion$</td>
<td>noun</td>
<td>ote$</td>
</tr>
<tr>
<td>ition$</td>
<td>noun</td>
<td>ite$</td>
</tr>
<tr>
<td>otion$</td>
<td>noun</td>
<td>ote$</td>
</tr>
</tbody>
</table>

Map with existing SD-Rules in LVG

<table>
<thead>
<tr>
<th>Identified Rules</th>
<th>Rules in Lexical Tools</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ness$</td>
<td>noun</td>
<td>$</td>
</tr>
<tr>
<td>ion$</td>
<td>noun</td>
<td>e$</td>
</tr>
<tr>
<td></td>
<td>sion$</td>
<td>noun</td>
</tr>
<tr>
<td></td>
<td>Others ...</td>
<td></td>
</tr>
<tr>
<td>ity$</td>
<td>noun</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>icity$</td>
<td>noun</td>
</tr>
<tr>
<td></td>
<td>Others ...</td>
<td>70</td>
</tr>
<tr>
<td>ility$</td>
<td>noun</td>
<td>le$</td>
</tr>
<tr>
<td></td>
<td>Others ...</td>
<td>253</td>
</tr>
<tr>
<td>ation$</td>
<td>noun</td>
<td>e$</td>
</tr>
</tbody>
</table>
Final Compile

• Final affix validation program:
 ▪ Affix check: check the first and last (3) characters between base forms of derivational pairs to assure only one affix is involved.
 ▪ Exception filter:
 o able|adj|ability|noun
 o long|adj|length|noun
 o high|adj|height|noun
 o ...
 ▪ Spelling variants
 o dysmaturity|noun|dismature|adj
 o gray|adj|grey|noun
 o haemolysed|adj|hemolyzation|noun
 o ...

• Combine all three lists (ZD, PD, ND)
Final Results

• More coverage (will grow with Lexicon)

<table>
<thead>
<tr>
<th>2011 Lvg Facts</th>
<th>2012 Lvg Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,559</td>
<td>89,950</td>
</tr>
</tbody>
</table>

Derivation Pairs Distribution

- PrefixD: 66%
- NomD: 17%
- ZeroD: 17%

• Virtually 100% precision rate (Facts)
Future Work

• **ZeroD:**
 - Rules-based filter: syntactic category and other linguistic knowledge
 - PD-Rules: syntactic category and other linguistic knowledge

• **PrefixD:**
 - Update prefix list annually
 - Complete tagging processes for all collected prefix
 - Rules-based filter: syntactic category and other linguistic knowledge
 - PD-Rules: syntactic category and other linguistic knowledge

• **SuffixD:**
 - Develop a thorough validation process for existing SD-Rules by all possible raw SD pairs in the Lexicon
 - Find all exceptions for each SD-Rules in Lexicon
 - Rules-based filter: syntactic category and other linguistic knowledge
 - SD-Rules: syntactic category and other linguistic knowledge
Questions

Lexical Tools

http://SPECIALIST.nlm.nih.gov/lvg
Lexical Tools - Six Tools

Input

Lvg
Norm
LuiNorm
WordIndex
ToASCII
Fields

Output...
Output.3
Output.2
Output.1
Lexical Tools - Types

• Command line tools
 – lvg (Lexical Variants Generation)
 – norm
 – luiNorm
 – wordInd
 – toAscii
 – fields
• Lexical Gui Tool (lgt)
• Web Tools
• Java API’s
Functions

- Used in nature language processing for
 - aggressive text pattern matching
 - creating normalized and expanded terms
 - making word, term, phrase indexes
 - matching queries with indexed entries
 - increasing recall and/or precision
Facts

• Release annually
• Free distributed with open source code
• 100% Java (since 2002)
• Run on different platforms
• One complete package
• Documents & supports
Norm

• Composed of 11 Lvg flow components to abstract away from:
 – case
 – punctuation
 – possessive forms
 – inflections
 – spelling variants
 – stop words
 – Diacritics, ligatures & symbols (Unicode to ASCII)
 – word order
<table>
<thead>
<tr>
<th>q0:</th>
<th>map Unicode symbols to ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>g:</td>
<td>remove genitives</td>
</tr>
<tr>
<td>rs:</td>
<td>remove parenthetic plural forms</td>
</tr>
<tr>
<td>o:</td>
<td>replace punctuation with spaces</td>
</tr>
<tr>
<td>t:</td>
<td>strip stop words</td>
</tr>
<tr>
<td>l:</td>
<td>lowercase</td>
</tr>
<tr>
<td>B:</td>
<td>uninfl ect each words in a term</td>
</tr>
<tr>
<td>Ct:</td>
<td>retrieve citations</td>
</tr>
<tr>
<td>q7:</td>
<td>Unicode core Norm</td>
</tr>
<tr>
<td>q8:</td>
<td>strip or map non-ASCII char</td>
</tr>
<tr>
<td>w:</td>
<td>sort words by order</td>
</tr>
<tr>
<td>Operation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>q0</td>
<td>map Unicode symbols to ASCII</td>
</tr>
<tr>
<td>g</td>
<td>remove genitives</td>
</tr>
<tr>
<td>rs</td>
<td>remove parenthetic plural forms</td>
</tr>
<tr>
<td>o</td>
<td>replace punctuation with spaces</td>
</tr>
<tr>
<td>t</td>
<td>strip stop words</td>
</tr>
<tr>
<td>l</td>
<td>lowercase</td>
</tr>
<tr>
<td>B</td>
<td>uninflcet each words in a term</td>
</tr>
<tr>
<td>Ct</td>
<td>retrieve citations</td>
</tr>
<tr>
<td>q7</td>
<td>Unicode core Norm</td>
</tr>
<tr>
<td>q8</td>
<td>strip or map non-ASCII char</td>
</tr>
<tr>
<td>w</td>
<td>sort words by order</td>
</tr>
<tr>
<td>g</td>
<td>remove genitives</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>rs</td>
<td>remove parenthetic plural forms</td>
</tr>
<tr>
<td>o</td>
<td>replace punctuation with spaces</td>
</tr>
<tr>
<td>t</td>
<td>strip stop words</td>
</tr>
<tr>
<td>l</td>
<td>lowercase</td>
</tr>
<tr>
<td>B</td>
<td>uninflect each words in a term</td>
</tr>
<tr>
<td>Ct</td>
<td>retrieve citations</td>
</tr>
<tr>
<td>q7</td>
<td>Unicode core Norm</td>
</tr>
<tr>
<td>q8</td>
<td>strip or map non-ASCII char</td>
</tr>
<tr>
<td>w</td>
<td>sort words by order</td>
</tr>
</tbody>
</table>

Hodgkin's Diseases, NOS
Norm

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>map Unicode symbols to ASCII</td>
<td>Hodgkin's Diseases, NOS</td>
</tr>
<tr>
<td>g</td>
<td>remove genitives</td>
<td>Hodgkin Diseases, NOS</td>
</tr>
<tr>
<td>rs</td>
<td>remove parenthetic plural forms</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>replace punctuation with spaces</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>strip stop words</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>lowercase</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>uninflect each words in a term</td>
<td></td>
</tr>
<tr>
<td>Ct</td>
<td>retrieve citations</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td>Unicode core Norm</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td>strip or map non-ASCII char</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>sort words by order</td>
<td></td>
</tr>
<tr>
<td>q0: map Unicode symbols to ASCII</td>
<td>Hodgkin's Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>g: remove genitives</td>
<td>Hodgkin's Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>rs: remove parenthetic plural forms</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>o: replace punctuation with spaces</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>t: strip stop words</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>l: lowercase</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>B: uninflect each words in a term</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>Ct: retrieve citations</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>q7: Unicode core Norm</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>q8: strip or map non-ASCII char</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>w: sort words by order</td>
<td>Hodgkin Diseases, NOS</td>
<td></td>
</tr>
<tr>
<td>q0: map Unicode symbols to ASCII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g: remove genitives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs: remove parenthetic plural forms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o: replace punctuation with spaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t: strip stop words</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l: lowercase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B: uninflect each words in a term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ct: retrieve citations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q7: Unicode core Norm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q8: strip or map non-ASCII char</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w: sort words by order</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Norm

<table>
<thead>
<tr>
<th>Hodgkin's Diseases, NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodgkin's Diseases, NOS</td>
</tr>
<tr>
<td>Hodgkin Diseases, NOS</td>
</tr>
<tr>
<td>Hodgkin Diseases, NOS</td>
</tr>
<tr>
<td>Hodgkin Diseases, NOS</td>
</tr>
<tr>
<td>Process</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>q0</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>rs</td>
</tr>
<tr>
<td>o</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>l</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Ct</td>
</tr>
<tr>
<td>q7</td>
</tr>
<tr>
<td>q8</td>
</tr>
<tr>
<td>w</td>
</tr>
<tr>
<td>q0: map Unicode symbols to ASCII</td>
</tr>
<tr>
<td>g: remove genitives</td>
</tr>
<tr>
<td>rs: remove parenthetic plural forms</td>
</tr>
<tr>
<td>o: replace punctuation with spaces</td>
</tr>
<tr>
<td>t: strip stop words</td>
</tr>
<tr>
<td>1: lowercase</td>
</tr>
<tr>
<td>B: uninflect each words in a term</td>
</tr>
<tr>
<td>Ct: retrieve citations</td>
</tr>
<tr>
<td>q7: Unicode core Norm</td>
</tr>
<tr>
<td>q8: strip or map non-ASCII char</td>
</tr>
<tr>
<td>w: sort words by order</td>
</tr>
<tr>
<td>Step</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>q0</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>rs</td>
</tr>
<tr>
<td>o</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>l</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Ct</td>
</tr>
<tr>
<td>q7</td>
</tr>
<tr>
<td>q8</td>
</tr>
<tr>
<td>w</td>
</tr>
<tr>
<td>Norm</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>q0: map Unicode symbols to ASCII</td>
</tr>
<tr>
<td>g: remove genitives</td>
</tr>
<tr>
<td>rs: remove parenthetic plural forms</td>
</tr>
<tr>
<td>o: replace punctuation with spaces</td>
</tr>
<tr>
<td>t: strip stop words</td>
</tr>
<tr>
<td>l: lowercase</td>
</tr>
<tr>
<td>B: uninflect each words in a term</td>
</tr>
<tr>
<td>Ct: retrieve citations</td>
</tr>
<tr>
<td>q7: Unicode core Norm</td>
</tr>
<tr>
<td>q8: strip or map non-ASCII char</td>
</tr>
<tr>
<td>w: sort words by order</td>
</tr>
<tr>
<td>q0: map Unicode symbols to ASCII</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>g: remove genitives</td>
</tr>
<tr>
<td>rs: remove parenthetic plural forms</td>
</tr>
<tr>
<td>o: replace punctuation with spaces</td>
</tr>
<tr>
<td>t: strip stop words</td>
</tr>
<tr>
<td>l: lowercase</td>
</tr>
<tr>
<td>B: uninflect each words in a term</td>
</tr>
<tr>
<td>Ct: retrieve citations</td>
</tr>
<tr>
<td>q7: Unicode core Norm</td>
</tr>
<tr>
<td>q8: strip or map non-ASCII char</td>
</tr>
<tr>
<td>w: sort words by order</td>
</tr>
<tr>
<td>Norm</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>q0: map Unicode symbols to ASCII</td>
</tr>
<tr>
<td>g: remove genitives</td>
</tr>
<tr>
<td>rs: remove parenthetic plural forms</td>
</tr>
<tr>
<td>o: replace punctuation with spaces</td>
</tr>
<tr>
<td>t: strip stop words</td>
</tr>
<tr>
<td>l: lowercase</td>
</tr>
<tr>
<td>B: uninflect each words in a term</td>
</tr>
<tr>
<td>Ct: retrieve citations</td>
</tr>
<tr>
<td>q7: Unicode core Norm</td>
</tr>
<tr>
<td>q8: strip or map non-ASCII char</td>
</tr>
<tr>
<td>w: sort words by order</td>
</tr>
<tr>
<td>Operation</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>q0:</td>
</tr>
<tr>
<td>g:</td>
</tr>
<tr>
<td>rs:</td>
</tr>
<tr>
<td>o:</td>
</tr>
<tr>
<td>t:</td>
</tr>
<tr>
<td>l:</td>
</tr>
<tr>
<td>B:</td>
</tr>
<tr>
<td>Ct:</td>
</tr>
<tr>
<td>q7:</td>
</tr>
<tr>
<td>q8:</td>
</tr>
<tr>
<td>w:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normalized Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodgkin's Diseases, NOS</td>
</tr>
<tr>
<td>Hodgkin's Diseases, NOS</td>
</tr>
<tr>
<td>Hodgkin Diseases, NOS</td>
</tr>
<tr>
<td>Hodgkin Diseases, NOS</td>
</tr>
<tr>
<td>Hodgkin Diseases NOS</td>
</tr>
<tr>
<td>Hodgkin Diseases</td>
</tr>
<tr>
<td>hodgkin diseases</td>
</tr>
<tr>
<td>hodgkin disease</td>
</tr>
<tr>
<td>disease hodgkin</td>
</tr>
</tbody>
</table>
Norm: Example

- Hodgkin Disease
- HODGKINS DISEASE
- Hodgkin's Disease
- Disease, Hodgkin's
- HODGKIN'S DISEASE
- Hodgkin's disease
- Hodgkins Disease
- Hodgkin's disease NOS
- Hodgkin's disease, NOS
- Disease, Hodgkins
- Diseases, Hodgkins
- Hodgkins Diseases
- Hodgkins disease
- hodgkin's disease
- Disease;Hodgkins
- Disease, Hodgkin
- ...

arrow pointing to "disease hodgkin"
Normalize and Index

Terms in Corpus

normalize

Index

Indexed Database - Normalized String
Normalize and Index

Input String

Normalized String

SQL Query

Terms in Corpus

Index

Results

Indexed Database - Normalized String
Questions

NLP & NLP Tools

• Natural Language
 ▪ is ordinary language that humans use naturally
 ▪ may be spoken, signed, or written

• Natural Language Processing
 ▪ NLP is to process human language to make their information accessible to computer applications
 ▪ The goal is to design and build software that will analyze, understand, and generate human language
 ▪ Most NLP applications require knowledge from linguistics, computer science, and statistics
Information Retrieval

NLP System/Database/Search Engine

Input String

- Tokenize
- Spelling Check
- Lexical Variants
- POS Tagging
- Semantic Knowledge
Core NLP Tasks

• Ex: Web search engine for biomedical information
 ▪ Software:
 o keyword search
 ➢ break inputs into words
 ➢ POS tagging
 ➢ other annotation
 o spelling check
 ➢ suggest correct spelling for misspelled words
 o lexical variants
 ➢ spelling variants, inflectional/uninflectional variants, synonyms, acronyms/abbreviations, expansions, derivational variants, etc.
 o semantic knowledge
 ➢ map text to Metathesaurus concepts
 ➢ Word Sense Disambiguation (WSD)
 ▪ Data:
 o corpus: annotation/tagging
NLP Tools

- Ex: Web search engine for biomedical information
 - **Software:**
 - keyword search
 - break inputs into words *(Text Tools)*
 - POS tagging *(dTagger)*
 - Other annotation *(Visual Tagging Tool, VTT)*
 - spelling check
 - suggest correct spelling for misspelled words *(gSpell)*
 - lexical variants
 - spelling variants, inflectional/uninflectional variants, synonyms, acronyms/abbreviations, expansions, derivational variants, etc. *(Lexical Tools)*
 - semantic knowledge
 - map text to Metathesaurus concepts *(MetaMap, MMTX)*
 - Word Sense Disambiguation *(TC - StWSD)*
 - **Data: corpus**
 - annotation/tagging *(Text Tools, dTagger, VTT, Lexical Tools)*
Core NLP Tools

Ex: Web Search Engine for biomedical information

- Software:
 - keyword search
 - break inputs into words (Text Tools)
 - POS tagging (dTagger)
 - Other annotation (Visual Tagging Tool, VTT)
 - spelling check
 - suggest correct spelling for misspelled words (gSpell)
 - lexical variants
 - spelling variants, inflectional/uninflectional variants, synonyms, acronyms/abbreviations, expansions, derivational variants, etc. (Lexical Tools)
 - semantic knowledge
 - map text to Metathesaurus concepts (MetaMap, MMTX)
 - Word Sense Disambiguation (TC - StWSD)

- Data: corpus
 - annotation/tagging (Text Tools, dTagger, VTT, Lexical Tools)
The SPECIALIST NLP Tools

The SPECIALIST LEXICON

LexBuild

LexCheck

LexAccess

Lexical Tools

Text Tools

NLP Projects

Lexical Tool

Text Tool

SCRT
Questions